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a b s t r a c t 

In this paper we develop a mathematical model for the spread of the coronavirus disease 

2019 (COVID-19). It is a new θ-SEIHRD model (not a SIR, SEIR or other general purpose 

model), which takes into account the known special characteristics of this disease, as the 

existence of infectious undetected cases and the different sanitary and infectiousness con- 

ditions of hospitalized people. In particular, it includes a novel approach that considers the 

fraction θ of detected cases over the real total infected cases, which allows to study the 

importance of this ratio on the impact of COVID-19. The model is also able to estimate the 

needs of beds in hospitals. It is complex enough to capture the most important effects, but 

also simple enough to allow an affordable identification of its parameters, using the data 

that authorities report on this pandemic. 

We study the particular case of China (including Chinese Mainland, Macao, Hong-Kong and 

Taiwan, as done by the World Health Organization in its reports on COVID-19), the country 

spreading the disease, and use its reported data to identify the model parameters, which 

can be of interest for estimating the spread of COVID-19 in other countries. We show a 

good agreement between the reported data and the estimations given by our model. We 

also study the behavior of the outputs returned by our model when considering incom- 

plete reported data (by truncating them at some dates before and after the peak of daily 

reported cases). By comparing those results, we can estimate the error produced by the 

model when identifying the parameters at early stages of the pandemic. Finally, taking 

into account the advantages of the novelties introduced by our model, we study different 

scenarios to show how different values of the percentage of detected cases would have 

changed the global magnitude of COVID-19 in China, which can be of interest for policy 

makers. 

© 2020 Elsevier B.V. All rights reserved. 

 

 

1. Introduction 

Modeling and simulation are important decision tools that can be useful to control human and animal diseases [1–4] .

However, since each disease exhibits its own particular biological characteristics, the models need to be adapted to each

specific case in order to be able to tackle real situations [5,6] . 
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Coronavirus disease 2019 (COVID-19) is an infectious disease emerging in China in December 2019 that has rapidly spread

around China and many other countries (see [7] ). On 11 February 2020, the World Health Organization (WHO) renamed the

epidemic disease caused by 2019-nCoV as strain severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (see [8,9] ). 

This is a new virus and a completely new situation [10] . On 30 January 2020, WHO declared it to be a Public Health

Emergency of International Concern [11] . As of 11 March 2020, the disease was confirmed in more than 118,0 0 0 cases

reported globally in 114 countries, more than 90 percent of cases are in just four countries (two of those China and the

Republic of Korea - have significantly declining epidemics) and WHO declared it to be a pandemic, the first one caused by

a coronavirus [12] . On 1 April 2020 there are 872,481 and 43,275 official reported cases and deaths, respectively, and there

is no vaccine specifically designed for this virus, with proven effectiveness. 

There are some mathematical models in the literature that try to describe the dynamics of the evolution of COVID-19.

Three phenomenological models are presented in [13] , which were validated with outbreaks of other diseases different from

COVID-19, trying to generate and assess short-term forecasts of the cumulative number of reported cases. Other works (see

e.g. [14] ), propose SEIR type models with little variations and some of them incorporate stochastic components. COVID-19

is a disease caused by a new virus, which is generating a worldwide emergency situation and needs a model taking into

account its known specific characteristics. In particular, it would be convenient to develop a model which incorporates the

following: 

• the effect of undetected infected people (see [15] ), being able to show the dependence of the impact of COVID-19 on the

percentage of detected cases over the real total infected cases. Here, we denote by θ the fraction of detected cases over

the real total infected cases. We note that there exist in the literature various works that propose estimations of θ in

several countries (including China) for the COVID-19 pandemic (see, e.g., [15 , 16] ). 
• the effect of different sanitary and infectiousness conditions of hospitalized people (differentiating those with mild and

severe conditions that will recover from those who will finally die), 
• the estimation of the needs of beds in hospitals (which is one of the major problems for policy makers addressing

COVID-19). 

The main goal of this paper is to develop a mathematical model well adapted to COVID-19 (not a SIR, SEIR or other

general purpose epidemic models), taking into account the special characteristics mentioned previously. The model should

be able to estimate, considering different scenarios, the number of cases, deaths and needs of beds in hospitals, in territories

where COVID-19 is (or may be) a very serious health problem. It needs to be complex enough to capture the most important

effects, but also simple enough to allow an affordable identification of its parameters, using the data that authorities report

on this pandemic. 

The θ-SEIHRD model developed here is based on the Be-CoDiS model (see [17] ), designed to be able to study the spread

of human diseases worldwide. That model was initially used for the 2014–2016 ebola outbreak (see [17] ) and has also been

used for the 2018–2020 ebola outbreak in the Democratic Republic of the Congo (see [18,19] ), in both cases with very

successful forecasts. Other works of our group related with the mathematical modeling of epidemics can be seen on the

website https://www.ucm.es/momat/epidemics . In this paper, we have adapted that model to the specific case of COVID-19.

Only within-country disease spread is considered in this paper for territories with a relevant number of people infected

by COVID-19, where local transmission is the major cause of the disease spread. We point out that, when available, the

parameters of the model are taken from the literature (see, e.g. [15,20] ). Undocumented parameters or specific parameters

to our approach are identified by using a multi-objective optimization approach, developed in a previous work (see [19] ).

We point out that we use a novel approach that relates the disease fatality rate with the percentage of detected cases over

the real total infected cases, which allows to study the importance of this percentage on the impact of COVID-19. 

Next, we validate our approach by studying the specific case of China (including the Chinese Mainland, Macao, Hong-

Kong and Taiwan, as done by the World Health Organization in its reports on COVID-19; see [21] ), which is the country

with more data available to date. A good identification of the model parameters for this study case may be of interest for

the application of the model to other territories. With that aim, we discuss and compare the results returned by our model

with data reported by authorities on COVID-19 (see, e.g. [22–24] ). In particular, we describe the evolution of the effective

reproduction number R e and compare the values with those found in the literature (see e.g. [25] ). 

We also study the behavior of the outputs returned by our model when considering incomplete data (truncated at some

dates before and after the peak of daily reported cases). By comparing those results with real observation data we can

estimate the error produced by the model when identifying the parameters at early stages of the epidemic. 

Finally, we study different scenarios to show how different values of the percentage of detected cases would have

changed the impact of COVID-19 in China, which can be of interest for policy makers. 

2. Mathematical formulation of the model 

In this section, we describe the θ-SEIHRD model. First of all, we present the epidemiological characteristics of COVID-19.

Then, we introduce a general and a detailed description of our approach. Finally, we detail some of the model outputs that

will be used for the numerical experiments performed later. 

https://www.ucm.es/momat/epidemics
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2.1. Epidemiological characteristics of COVID-19 

According to the known characteristics of the COVID-19 pandemic, we assume that each person is in one of the following

compartments (see [10] ): 

• Susceptible (denoted by S ): The person is not infected by the disease pathogen. 
• Exposed (denoted by E ): The person is in the incubation period after being infected by the disease pathogen, and has no

visible clinical signs. The individual could infect other people but with a lower probability than people in the infectious

compartments. After the incubation period, the person passes to the Infectious compartment I . 
• Infectious (denoted by I ): After the incubation period, it is the first compartment of the infectious period, where no-

body is expected to be detected yet. The person has finished the incubation period, may infect other people and starts

developing clinical signs. After this period, people in this compartment can be, either taken in charge by sanitary au-

thorities (and we classify them as hospitalized), or not detected by authorities and continue as infectious (but in other

compartment, I u ). 
• Infectious but undetected (denoted by I u ): After being in the compartment I , the person can still infect other people,

have clinical signs but is not be detected and reported by authorities. We assume that only people with low or medium

symptoms can reach this compartment, not the people who will die. After this period, people in this compartment pass

to the Recovered compartment R u . 
• Hospitalized or in quarantine at home (but detected and reported by the authorities) that will recover (denoted by H R ):

The person is in hospital (or in quarantine at home) and can still infect other people. At the end of this state, a person

passes to the Recovered compartment R d . 
• Hospitalized that will die (denoted by H D ): The person is hospitalized and can still infect other people. At the end of this

state, a person passes to the Dead compartment. 
• Dead by COVID-19 (denoted by D ): The person has not survived the disease. 
• Recovered after being previously detected as infectious (denoted by R d ): The person was previously detected as infec-

tious, survived the disease, is no longer infectious and has developed a natural immunity to the virus. When a person

enters this compartment he/she remains in hospital for a convalescence period of C o days (average). 
• Recovered after being previously infectious but undetected (denoted by R u ): The person was not previously detected as

infectious, survived the disease, is no longer infectious and has developed a natural immunity to the virus. 

The authorities may apply various control measures in order to control the COVID-19 spread (see [26] ): 

• Isolation: Infected people are isolated from contact with other people. Only sanitary professionals are in contact with

them. However, contamination of those professionals also occurs (see [27] ). Isolated patients receive an adequate medical

treatment that reduces the COVID-19 fatality rate. 
• Quarantine: Movement of people in the area of origin of an infected person is restricted and controlled (e.g. quick sani-

tary check-points at the airports) to avoid that possible infected people spread the disease. 
• Tracing: The objective of tracing is to identify potential infectious contacts which may have infected a person or spread

COVID-19 to other people. Increase the number of tests in order to increase the percentage of detected infected people. 
• Increase of sanitary resources: The number of operational beds and sanitary personal available to detect and treat af-

fected people is increased, producing a decrease in the infectious period for the compartment I . 

2.2. General description 

The model is used to evaluate the spread of a human disease within some territories during a fixed time interval. 

At the beginning of the simulation, the model parameters are set by the user (for instance, the values considered for

COVID-19 are described in Section 3 ). We consider as time t = 0 the 1 December 2019 (7 days before the date that appears

in the literature as the most probable date for the index case in China). Here we took into account that, according to the

World Health Organisation’s website, the first confirmed COVID-19 case in China was on December 8 (see [28] ). Furthermore,

according to [10] , the earliest symptom onset of confirmed patients can be traced back to 7 December 2019. We set then

 = 0 that day at 10AM CET (this is a technical adjustment, since each day the WHO provides data as reported by national

authorities by that hour; see [21] ). 

We can start our simulation at any initial time t 0 ≥ 0, considering that only susceptible people live in the territories that

are free of the disease, whereas the number of people in compartments S, E, I, I u , H R , H D , R d , R u , and D of the infected terri-

tories are set to their corresponding values. Then, during the time interval [ t 0 , t 0 + T max ] , with T max ∈ IN being the maximum

number of simulation days, the within-country daily spread procedures (described in Section 2.3 ) are applied. If at the end

of a simulation day t there is less than 1 person in each compartment E, I, I u , H R and H D in all the territories considered,

the simulation is stopped. Else, the simulation is stopped when t = t 0 + T max . Furthermore, the control measures are also

implemented and they can be activated or deactivated, when starting the model, in order to quantify their effectiveness to

reduce the magnitude and duration of a COVID-19 epidemic. 

A diagram summarizing the main structure of our full model is presented in Fig. 1 . After describing the full model, we

will present a simplified version (the one we will use for our simulations), with an also simpler diagram (see Fig. 2 ). 
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Fig. 1. Diagram summarizing the model for COVID-19 given by system (1) . 

Fig. 2. Diagram summarizing the simplified version of the model for COVID-19 given by system (3) . 

 

 

 

 

 

 

 

 

 

 

 

 

The choice of using a deterministic model instead of a stochastic one is done as a first approach, since such kind of

models present some advantages, such as: a low computational complexity allowing a better calibration of the model pa-

rameters or the possibility of using the theory of ordinary differential equations for suitably analyzing and interpreting the

model. Furthermore, according to [29] , deterministic models should be the first tool to be used when modelling a new

problem with few data. The authors of that work also note that the stochastic models are not suitable when it is difficult or

impossible to determine the distribution probability, are difficult to analyze and require more data for the calibration of the

model. 

As said above, in this work we will only consider the within-country disease spread of territories where, starting from

suitable values of t 0 , the COVID-19 pandemic is already spreading by its own, with a relatively negligible dependence of the

international movement of people. The between-country disease spread will be considered in another work. 

2.3. The mathematical model 

The dynamic disease spread within a particular contaminated territory i is modeled by using a deterministic compart-

mental model (see, for instance, [5] ). 

We assume that people in a territory are characterized to be in one of those compartments, described in Section 2.1 :

S, E, I, I u , H R , H D , R d , R u or D . For the sake of simplicity we assume that, at each time, the population inside a territory

is homogeneously distributed (this can be improved by dividing some territories into a set of smaller regions with similar
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characteristics). Thus, the spatial distribution of the epidemic inside a territory is omitted. We also assume that new births

are susceptible people. We do not consider here movement of people between territories. 

Under those assumptions, the evolution of the compartments mentioned above is modeled by the following system of

ordinary differential equations (which is simplified below): 

d S (i ) 

d t 
(t) = −S (i ) (t) 

N 

(i ) 

(
m 

(i ) 
E 

(t) β(i ) 
E 

E (i ) (t) + m 

(i ) 
I 

(t) β(i ) 
I 

I (i ) (t) + m 

(i ) 
I u 

(t) β(i ) 
I u 

(θ (i ) (t)) I (i ) 
u (t) 

)
−S (i ) (t) 

N 

(i ) 

(
m 

(i ) 
H R 

(t) β(i ) 
H R 

(t) H 

(i ) 
R 

(t) + m 

(i ) 
H D 

(t) β(i ) 
H D 

(t) H 

(i ) 
D 

(t) 
)

−μ(i ) 
m 

S (i ) (t) + μ(i ) 
n 

(
S (i ) (t) + E (i ) (t) + I (i ) (t) + I (i ) 

u (t) + R 

(i ) 
d 

(t) + R 

(i ) 
u (t) 

)
, 

d E (i ) 

d t 
(t) = 

S (i ) (t) 

N 

(i ) 

(
m 

(i ) 
E 

(t) β(i ) 
E 

E (i ) (t) + m 

(i ) 
I 

(t) β(i ) 
I 

I (i ) (t) + m 

(i ) 
I u 

(t) β(i ) 
I u 

(θ (i ) (t)) I (i ) 
u (t) 

)
+ 

S (i ) (t) 

N 

(i ) 

(
m 

(i ) 
H R 

(t) β(i ) 
H R 

(t) H 

(i ) 
R 

(t) + m 

(i ) 
H D 

(t) β(i ) 
H D 

(t) H 

(i ) 
D 

(t) 
)

−μ(i ) 
m 

E (i ) (t) − γE E 
(i ) (t) + τ (i ) 

1 
(t) − τ (i ) 

2 
(t) , 

d I (i ) 

d t 
(t) = γE E 

(i ) (t) − (μ(i ) 
m 

+ γ (i ) 
I 

(t )) I (i ) (t ) , 

d I (i ) 
u 

d t 
(t) = (1 − θ (i ) (t )) γ (i ) 

I 
(t ) I (i ) (t ) − (μ(i ) 

m 

+ γ (i ) 
I u 

(t )) I (i ) 
u (t ) , 

d H 

(i ) 
R 

d t 
(t) = θ (i ) (t) 

(
1 − ω 

(i ) (t) 

θ (i ) (t) 

)
γ (i ) 

I 
(t) I (i ) (t) − γ (i ) 

H R 
(t) H 

(i ) 
R 

(t) , 

d H 

(i ) 
D 

d t 
(t) = ω 

(i ) (t) γ (i ) 
I 

(t) I (i ) (t) − γ (i ) 
H D 

(t) H 

(i ) 
D 

(t) , 

d R 

(i ) 
d 

d t 
(t) = γ (i ) 

H R 
(t) H 

(i ) 
R 

(t) − μ(i ) 
m 

R 

(i ) 
d 

(t) , 

d R 

(i ) 
u 

d t 
(t) = γ (i ) 

I u 
(t) I (i ) 

u (t) − μ(i ) 
m 

R 

(i ) 
u (t) , 

d D 

(i ) 

d t 
(t) = γ (i ) 

H D 
(t) H 

(i ) 
D 

(t) , (1)

where: 

• i ∈ { 1 , . . . , N C } , with N C ∈ N being the number of countries/territories/areas considered. 
• N 

( i ) is the number of people in territory i before the start of the pandemic. 
• μ(i ) 

n ∈ [0 , 1] is the natality rate (day −1 ) in territory i : the number of births per day and per capita. 

• μ(i ) 
m 

∈ [0 , 1] is the mortality rate (day −1 ) in territory i : the number of deaths per day and per capita (or, equivalently, the

inverse of the mean life expectancy (day) of a person). 
• ω 

(i ) (t) ∈ [ ω 

(i ) , ω 

(i ) ] ⊂ [0 , 1] is the case fatality rate in territory i at time t : the proportion of deaths compared to the total

number of infectious people (detected or not detected). Here, ω 

( i ) and ω 

(i ) are the minimum and maximum case fatality

rates for territory i , respectively. 
• θ (i ) (t) ∈ [ ω 

(i ) 
, 1] is the fraction of infected people that are detected and documented by the authorities in territory i at

time t . We are assuming, for the sake of simplicity, that all deaths due to COVID-19 are detected and reported, so that

θ (i ) (t) ≥ ω 

(i ) . Estimations of θ for the COVID-19 pandemic in several countries (including China) can be found in the

literature (see, e.g., [15 , 16] ). 
• β(i ) 

E 
, β(i ) 

I 
, β(i ) 

I u 
, β(i ) 

H R 
, β(i ) 

H D 
∈ R 

+ are the disease contact rates (day −1 ) of a person in the corresponding compartments, in

territory i (without taking into account the control measures). 
• β(i ) 

I u 
(θ ) ∈ R 

+ is the disease contact rate (day −1 ) of a person in the compartment I u in territory i (without taking into

account the control measures), where the fraction of infected people that are detected are θ . 
• γE ∈ (0 , + ∞ ) is the transition rate (day −1 ) from compartment E to compartment I . It is the same for all the territories. 

• γ (i ) 
I 

(t) ∈ (0 , + ∞ ) is the transition rate (day −1 ) from compartment I to compartments I u , H R or H D in territory i at time t .

• γ (i ) 
I u 

(t) , γ (i ) 
H R 

(t) and γ (i ) 
H D 

(t) ∈ (0 , + ∞ ) denote the transition rates (day −1 ) from compartments I u , H R and H D to compart-

ments R u , R d and D , respectively, in territory i at time t . 

• m 

(i ) 
E 

(t) , m 

(i ) 
I 

(t) , m 

(i ) 
I u 

(t ) , m 

(i ) 
H R 

(t ) , m 

(i ) 
H D 

(t ) ∈ [0 , 1] (%) are functions representing the efficiency of the control measures

applied to the corresponding compartments, in territory i at time t . 
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• τ (i ) 
1 

(t) is the people infected that arrives to territory i from other territories per day. τ (i ) 
2 

(t) is the people infected that

leaves territory i per day. Both can be modeled following the between-country spread part of the Be-CoDiS model, see

[17] ). 

System (1) is completed with initial data S ( i ) ( t 0 ), E ( i ) ( t 0 ), I ( i ) ( t 0 ), I (i ) 
u (t 0 ) , H 

(i ) 
R 

(t 0 ) , H 

(i ) 
D 

(t 0 ) , R (i ) 
d 

(t 0 ) , R (i ) 
u (t 0 ) and D 

( i ) ( t 0 )

given in [0, ∞ ). 

We point out that the 9th equation of system (1) is not coupled with the other equations. Thus, we can solve the first

eight equations of that system and the solution of the last one can be computed as follows: 

D 

(i ) (t) = D 

(i ) (t 0 ) + 

∫ t 

t 0 

γ (i ) 
H D 

(s ) H 

(i ) 
D 

(s )d s. (2)

From a modeling point of view, the term 

ω (i ) (t) 

θ (i ) (t) 
in the 5th equation of system (1) corresponds to the apparent fatality

rate of the disease (obtained by considering only detected cases) in territory i at time t , and ω 

( i ) ( t ) is the real fatality rate

of the COVID-19 (taking into account detected and undetected cases). 

We could have also considered sub-compartments organized by ages, etc., but that would complexify the model and

would hinder the identification of parameters. For instance, we could use in each compartment a different natality rate for

the people infected (according to their age distribution). Actually, since the natality and mortality (not from COVID-19) do

not seem to be important factors for COVID-19 (at least for relatively short periods of time) one may consider the simplified

model with μm 

= μn = 0 . We will consider this case in the rest of this paper. The corresponding new diagram summarizing

the main structure of the simplified model can be seen in Fig. 2 and the resulting system equations, after removing the

index i denoting different territories (for the sake of simplicity), is given by the system (3) below. 

d S 

d t 
(t) = −S(t) 

N 

(
m E (t) βE E(t) + m I (t) βI I(t) + m I u (t) βI u (θ (t )) I u (t ) 

)
−S(t) 

N 

(
m H R (t) βH R (t ) H R (t ) + m H D (t) βH D (t ) H D (t ) 

)
, 

d E 

d t 
(t) = 

S(t) 

N 

(
m E (t) βE E(t) + m I (t) βI I(t) + m I u (t) βI u (θ (t )) I u (t ) 

)
+ 

S(t) 

N 

(
m H R (t) βH R (t ) H R (t ) + m H D (t) βH D (t ) H D (t ) 

)
− γE E(t ) + τ1 (t) − τ2 (t) , 

d I 

d t 
(t) = γE E(t) − γI (t ) I(t ) , 

d I u 

d t 
(t) = (1 − θ (t )) γI (t ) I(t ) − γI u (t ) I u (t ) , 

d H R 

d t 
(t) = θ (t) 

(
1 − ω(t) 

θ (t) 

)
γI (t) I(t) − γH R (t) H R (t) , 

d H D 

d t 
(t) = ω(t) γI (t) I(t) − γH D (t) H D (t) , 

d R d 

d t 
(t) = γH R (t) H R (t) , 

d R u 

d t 
(t) = γI u (t) I u (t) , 

d D 

d t 
(t) = γH D (t) H D (t) . (3) 

We remark that, with this simplification the 7th, 8th and 9th equations of system (3) are not coupled with the other

equations. Thus, we can solve the first six equations of that system and the solution of the last three equations can be

computed by using (2) and 

R d (t) = R d (t 0 ) + 

∫ t 

t 0 

γH R (s ) H R (s )d s, 

R u (t) = R u (t 0 ) + 

∫ t 

t 0 

γI u (s ) I u (s )d s. 

For the numerical simulations presented in Section 4 , the first six equations of system (3) were numerically solved with

the classic 4th order Runge–Kutta method with four stages (RK4) and with four hours as time step (which was tested to see

that it is suitable to get stable results). 
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2.4. Outputs of the model 

Here, we present the outputs of the mathematical model (for territory i ; we continue avoiding the use of that index in

the notation, for the sake of simplicity), used to analyze the results of the simulations performed in Section 4 : 

• c m 

( t ): The model cumulative number of COVID-19 cases (in country i ) at day t , which is given by 

c m 

(t) = H R (t) + H D (t) + R d (t) + D (t) , 

and can be also computed as follows: 

c m 

(t) = c m 

(t 0 ) + 

∫ t 

t 0 

d 

(
H R + H D + R d + D 

)
d t 

(s )d s = c m 

(t 0 ) + 

∫ t 

t 0 

θ (s ) γI (s ) I(s )d s. 

• d m 

( t ): The model cumulative number of deaths (due to COVID-19), at day t (in territory i ), which is given by D ( t ). 
• R 0 and R e : The basic reproduction number and the effective reproduction number of COVID-19 (for territory i ). 

The basic reproduction number is defined as the number of cases one infected person generates on average over the

course of its infectious period, in an otherwise uninfected population and without special control measures. It depends

on the considered population (therefore, it may be different for different territories), but does not change during the

spread of the disease. 

The effective reproduction number is defined as the number of cases one infected person generates on average over the

course of its infectious period. Part of the population can be already infected and/or special control measures may have

been implemented. It depends on the considered population and changes during the spread of the disease. Furthermore,

R e (0) = R 0 . Typically, the spread of the disease slows down when R e ( i, t ) < 1. 

We apply the Next Generation Matrix method (see [30] ) to system (3) and obtain that: 

R 0 = 

((
( βI u ( 1 − θ ) γH R + βH R γI u ( θ − ω ) ) γI + βI γH R γI u 

)
γE + βE γI γH R γI u 

)
γH D + βH D ωγE γI γH R γI u 

γE γI γH D γH R γI u 

, 

where, for the sake of simplicity of notation, all previous coefficients correspond to their particular values at time t = 0 .

Furthermore, 

R e (t) = 

U e (t) 

γE γI γH D γH R γI u 

S(t) 

N 

, 

where 

U e (t) = 

((
( m I u βI u ( 1 − θ ) γH R + m H R βH R γI u ( θ − ω ) ) γI + m I βI γH R γI u 

)
γE + m E βE γI γH R γI u 

)
γH D 

+ m H D βH D ωγE γI γH R γI u , 

and, again in order to simplify the notation, all previous coefficients correspond to their particular values at time t . 
• Hos( t ): The number of people in hospital is estimated as follows: 

Hos (t) = H D (t) + p(t ) ( H R (t ) + (R d (t) − R d (t − C o )) ) , 

where p ( t ) is the fraction, at time t , of people in compartment H R that are hospitalized and C o days is the period of

convalescence (i.e. the time a person is still hospitalized after recovering from COVID-19). This function can help to

estimate and plan the number of clinical beds needed to treat all the COVID-19 cases. 
• MHos: The maximum number of hospitalized people at the same time (in territory i ) during the time interval [ t 0 , T ]. It

is computed as: 

MHos = max 
t∈ [ t 0 ,T ] 

Hos (t) . 

This number can help to estimate and plan the number of clinical beds needed to treat all the COVID-19 cases. 
• �E ( t ), �I u (t) and �H ( t ): The number of people infected during the time interval [ t 0 , T ], by contact with people in com-

partment E, I u and H = H R + H D , respectively. They are given by: 

�E (t) = 

∫ t 

t 0 

m E (s ) βE E(s ) 
S(s ) 

N 

d s, 

�I u (t) = 

∫ t 

t 0 

m I u (s ) βI u I u (s ) 
S(s ) 

N 

d s, 

�H (t) = 

∫ t 

t 0 

(
m H R (s ) βH R H R (s ) + m H D (s ) βH D H D (s ) 

)
S(s ) 

N 

d s. 

We point out that c m 

( t ) and d m 

( t ) can be compared with the corresponding values reported by WHO (see [27] ) 
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Table 1 

Summary of some parameters calibrated for COVID-19 in China, which can be found in [20,27,34] . A brief 

description ( Description ) and the range of the considered values ( Value ) are reported. 

Notation Value Description Reference 

γ E 0.1818 Transition rate of a person in compartment E (day −1 ) [27] 

γ I ( t ) [0.1493,1.4286] Transition rate of a person in compartment I (day −1 ) 

at time t [20] 

γH R (t) [0.0752,0.1370] Transition rate of a person in compartment H R 

to compartment R d (day −1 ) at time t [27] 

γI u (t) [0.0752,0.1370] Transition rate of a person in compartment I u 
to compartment R u (day −1 ) at time t [27] 

C o 14 The period of convalescence (day) [34] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3. Model parameter estimation for COVID-19 

Some of the parameters used in the simulations presented in Section 4 have been found in the literature. However,

despite the effort to use the maximum amount of robust parameters as possible, and due to lack of information of the

behavior of the SARS-CoV-2, some of them have been estimated using empirical assumptions or techniques for parameter

identification. This part should be improved as soon as new information is available. 

We now detail each kind of parameter by its category. 

3.1. Territory indicators obtained from databases 

We have built a database where we have recorded the following data, that we use to estimate the parameters of the

model and to compare with the outputs of the numerical simulations presented in Section 4 

We obtain the countries’ population (N) for year 2018 from the World Data Bank, downloaded on 5 March 2020 (see

[31] ). 

There are some studies about the relevance of humidity and temperature for the spread of COVID-19. In [32] , it is shown

that the observed patterns of COVID-19 are not completely consistent with the hypothesis that high absolute humidity may

limit the survival and transmission of this virus. Furthermore, in [33] it has been found that the lower is the temperature,

the greater is the survival period of the SARS-CoV-2 outside the host. Since there is no clear scientific evidence of the effect

of the humidity and the temperature on the SARS-CoV-2, we have not included these two factors in our model (this would

need to be revised in case of appearing new findings regarding this topic). 

Furthermore, from the WHO Coronavirus disease (COVID-2019) situation reports (see [21] ), we have obtained the re-

ported cases per day (i.e. people who enter each day in compartments H R or H D ) and the reported COVID-19 deaths per

day. For each day t , they are denoted by c r ( t ) and d r ( t ), respectively. We have those data starting from 21 January 2020. Data

from 12 to 21 January 2020 were obtained from the following website: 

https://bnonews.com/index.php/2020/02/the- latest- coronavirus- cases/ 

We assume that the index case started his incubation period in China on 1 December 2019, as the earliest symptom

onset of confirmed patients can be traced back to 7 December 2019 (see [10] ). In order to complete the missing information

for the days without data between 8 December 2019 and 10 January 2020, we use a cubic hermite interpolation method

considering the fact that before 8 December 2019 no cases were reported. 

3.2. Parameters found in the literature 

Data given in Table 1 were calibrated for the cases in China, the first big source of COVID-19. However, due to the spread

of this disease, new studies should be performed to analyze the behavior of COVID-19 in other sanitary, population and

climatic conditions. Currently, very few studies accepted for the scientific community are available. 

3.3. Control measures 

Focusing on the application of the control measures, we multiply the disease contact rates (i.e. βE , β I , βI u , βH R 
and βH D 

)

by decreasing functions simulating the reduction of these rates as the control measures efficiency is increased. Here, we

have considered the functions (see [35] ): 

m E (t) = m I u (t) = m I (t) = m H R (t) = m H D (t) = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

(m 0 − m 1 ) exp 

(
− κ1 (t − λ0 ) 

)
+ m 1 t ∈ [ t 0 , λ1 ] , 

( m ( λ1 ) − m 2 ) exp 

(
− κ2 (t − λ1 ) 

)
+ m 2 t ∈ ( λ1 , λ2 ] , 

· · ·
( m ( λq −1 ) − m q ) exp 

(
− κq (t − λq −1 ) 

)
+ m q t ∈ ( λq −1 , ∞ ) , 

(4)

https://bnonews.com/index.php/2020/02/the-latest-coronavirus-cases/
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where, for every j ∈ { 0 , . . . , q } , m j ∈ [0, 1] measures the intensity of the control measures (greater value implies lower value

of disease contact rates), κ j ∈ [0 , + ∞ ) (day −1 ) simulates the efficiency of the control measures (greater value implies lower

value of disease contact rates) and λj ∈ [ t 0 , ∞ ] denotes the first day of application of each control strategy ( λ0 ∈ [0, ∞ ] is

the first day of application of a control strategy that was being used before t 0 , if any). Here, q ∈ N is the number of changes

of control strategy. 

The values of λj are typically taken from the literature (using the dates when the territories implement special control

measures). Some of the values of m j can be also sometimes known. The rest of the parameters need to be calibrated as

explained in Section 3.7 . 

3.4. Case fatality rate 

The case fatality rate ω( t ) depends on the territory i and time t . We recall that ω is the proportion of deaths compared to

the total number of infectious people (i.e. including detected and undetected people). As observed in other epidemics (see,

e.g. [17] ), it can be affected by the application of control measures (such as: earlier detection, better sanitary conditions,

etc.). Thus, we propose to consider the following definition: 

ω(t) = m I (t) ω + (1 − m I (t)) ω , (5)

where ω ∈ [0 , 1] is the case fatality rate when no control measures are applied (i.e. m I ( t ) ≡ 1); and ω ∈ [0, 1] is the case

fatality rate when the implemented control measures are fully applied (i.e. m I ( t ) ≡ m q for t ∈ [ λi −q , λq ) ). Constants ω and ω
are estimated with the calibration process mentioned in Section 3.7 . 

We note that ω ≥ ω , thus, we consider ω = ω + δω , with δω ∈ [0 , 1 − ω ] . 

3.5. Transition rates 

We denote by d I , d I u , d H R and d H D the (average) duration in days of a person in compartment I, I u , H R and H D , respectively,

without the application of control measures. Additionally, we consider that: 

• According to [15] , the transition rate from E to I depends only on the disease and, therefore, is considered constant. 
• According to [15,20] , the value of γ I ( t ) can be increased due to the application of control measures (i.e. people with

symptoms are detected earlier). As a consequence, the values of γI u (t) , γH R 
(t) and γH D 

(t) can be decreased (e.g. people

with symptoms stay under observation during more time). 
• According to [15] , d H R is lower than d H D . Thus, we consider d H D = d H R + δR , where δR > 0. 
• We assume, for the sake of simplicity, that the infectious period for undetected people is the same than that of the

hospitalized people that survive the disease. Thus, d I u = d H R . Furthermore, we assume that the addition of the times a

person is in the compartments I and I u is constant. Therefore, following [17] , we use the following functions: 

γI (t) = 

1 

d I − g(t) 
(day 

−1 
) , γI u (t) = γH R (t) = 

1 

d I u + g(t) 
(day 

−1 
) , γH D (t) = 

1 

d I u + g(t) + δR 

(day 
−1 

) , 

where g(t) = d g (1 − m I (t)) represents the decrease of the duration of d I due to the application of control measures, at

time t ; and d g is the maximum number of days that d I can be decreased due to the control measures. 

3.6. Disease contact rates 

Regarding βI u , we may consider 

βI u (θ ) = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

β I , if θ = ω , 

nonincreasing , if θ ∈ ( ω , 1) , 

β
I 

, if θ = 1 , 

where β I and β I are suitable lower and upper bounds, respectively. For the sake of simplicity, here we take β I = βI . 

Furthermore, following the idea proposed in [15,17] , we assume that there exists a relationship between the contact rates

β I , βE , βH R 
, βH D 

and β I . 

More precisely, we assume that people in compartments E, H R , H D and I u are less infectious than people in compartment

I (due to their lower virus load or isolation measures, see [15] ). Thus, we consider that βE = C E βI , βH R 
(t) = βH D 

(t) = C H (t) βI

and β
I 
= C u βI , where C E , C H ( t ) and C u ∈ [0, 1]. In Section 4.1 , we show how to compute the function C H ( t ) for the case of

China (something similar can be done for other territories). 

3.7. Identification of some parameters with a multi-objective technique 

First, we determine the set of unknown model parameters to be identified by the approach presented here. We denote

this set by �. The specific parameters considered to be included in � will depend on the available information about the
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disease in the considered territory. For the case of China considered in this work, we list the parameters in � at the end of

Section 4.1 . 

Once � is defined, we follow the methodology proposed in [19] . More precisely, we define a multi-objective optimization

problem based on the minimization of the relative errors between the cumulative number of cases and deaths reported by

the authorities (i.e. c r and d r ) and the cumulative number of cases and deaths estimated by the model when considering

a particular set of values for � (denoted by c �m 

and d �m 

, respectively). To do so, we consider the following multi-objective

optimization problem: {
min 

{
f c (�) , f d (�) 

}
subject to � ∈ S ⊂ R 

n , 
(6) 

where S is the feasible region (i.e. upper and lower bounds of each parameter), n is the number of parameters in �, and f c 
and f d are the objective functions defined as: 

f c (�) = 

∥∥c r − c �m 

∥∥
L 2 ([ t 0 ,t 0 + T max ]) 

‖ 

c r ‖ L 2 ([ t 0 ,t 0 + T max ]) 

and f d (�) = 

∥∥d r − d �m 

∥∥
L 2 ([ t 0 ,t 0 + T max ]) 

‖ 

d r ‖ L 2 ([ t 0 ,t 0 + T max ]) 

, (7) 

where ‖ g ‖ L 2 (t 0 ,t 0 + T max ) 
= 

(∫ t 0 + T max 
t 0 

g(t ) 2 d t 

)
1 / 2 denotes the L 2 norm of function g in [ t 0 , t 0 + T max ] . We note that the choice

of this norm reduces the risk of over-fitting to the reported data [36] . 

Next, to solve this multi-objective optimization problem, the algorithm called Weighting Achievement Scalarizing Func- 

tion Genetic Algorithm (WASF-GA) is applied [37–39] . We choose this particular multi-objective algorithm as it has been

applied with success in a previous work to identify some parameters of an epidemiological model simulating the evolution

of Ebola Virus Disease outbreaks in Democratic Republic of the Congo [38] . 

From a general point of view, WASF-GA is an evolutionary algorithm that manages a population of possible solutions

(called individuals), trying to improve them iteratively towards the optimal set (called Pareto optimal set). To do that, it

uses two procedures at each iteration: reproduction and replacement. Firstly, the reproduction method applies some classi-

cal genetic operators (here: selection, mutation, and crossover) to the population of the previous iteration to obtain a new

offspring population. Secondly, the replacement procedure decides which solutions from the previous iteration and the off-

spring populations should compose the population for the next iteration. The main feature of WASF-GA is that this decision

is based on preferences, which are defined as reference values for the objectives. Indeed, it classifies the individuals using

an achievement scalarizing function (see [39] ) characterized by the L ∞ 

distance between the objective function values and

the reference values with different weights. The considered sample of weight vectors is built following [39] to ensure they

are well distributed. As a result, WASF-GA returns a set of solutions covering a region of the Pareto optimal front. 

In this work, we set the number of iterations to 15,0 0 0, the population size to 50 individuals, the number of weight

vectors to 50, and the reference values for the objectives to zero, corresponding to the ideal situation of a total matching

between the model outputs and the reported data. The remaining input parameters of WASF-GA are those reported in [39] .

Since WASF-GA is a stochastic algorithm, it may return different Pareto front approximations for different executions of

the same instance. Then, to guarantee that results do not depend on the stochasticity of the algorithm, we perform 60 runs

of each experiment. Among all the 60 sets of solutions, we extract the most balanced solution, meaning the one whose

objective values are the closest to the reference values (in our case, zero) when considering the Euclidean distance. 

4. Numerical simulations and calibration of the model for the case of China 

We now propose some numerical experiments to illustrates the efficiency of our approach by considering the particular

case of the COVID-19 in China. First, we detail the considered parameters related to this scenario. Then, we present and

analyze the obtained results. 

4.1. Considered data 

We performed several numerical simulations for the case of China. For all the cases below we have used N =
1 . 400 . 812 . 636 people and p ( t ) ≡ 1, as it was decided to hospitalize all cases to reduce onward transmission (see [40] ). 

Following [15,20] , we set d E = 5 . 5 days (i.e. γE = 1 / 5 . 5 days −1 ), d I = 6 . 7 days, d g = 6 days, d I u = 14 −d I = 7 . 3 days (i.e.

γI u = 1 / 7 . 3 days −1 ). 

For βI u , we use the linear relationship 

βI u (θ ) = β
I 
+ 

βI − β
I 

1 − ω(t) 
(1 − θ ) . 

Additionally, according to [41] , on 20 February 2020, 2055 healthcare workers were infected in China. At this date, 74,651

cases were reported in China. From this data, we assume that the infection due to contact with people in compartment H R 

or H D should represent around 100 2055 
74651 % = 2 . 75 % of the number of cases. Thus, we compute βH R 

(t) = βH D 
(t) = C H (t) βI such
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that 

C H βI θ
((

1 − ω 
θ

)
1 

γH R 

+ 

ω 
θ

1 
γH D 

)
C H βI θ

((
1 − ω 

θ

)
1 

γH R 

+ 

ω 
θ

1 
γH D 

)
+ 

βI 

γI 
+ 

βE 

γE 
+ (1 − θ ) 

βI u 

γI u 

= 0 . 0275 . 

This implies that, 

C H = 

0 . 0275 

(
βI 

γI 
+ 

βE 

γE 
+ (1 − θ ) 

βI u 

γI u 

)
(1 − 0 . 0275) βI θ

((
1 − ω 

θ

)
1 

γH R 

+ 

ω 
θ

1 
γH D 

) . 

In the previous expression, the coefficients depend on territory i and time t . 

Following data reported by the WHO, we have aggregated data from the Chinese Mainland, Macao, Hong-Kong and Tai-

wan. Additionally, we assume that the movement of people in and out of China is negligible in order to estimate the number

of cases and deaths in China. Therefore, for the sake of simplicity, we assume in this section that τ1 = τ2 ≡ 0 . 

Reported data for China have some inconveniences for modeling purposes. On 13 February 2020, the Hubei (the Chinese

province with the largest number of cases and deaths) authorities decided to report as infected not only people who was

positive in laboratory tests, but also clinically diagnosed cases in that province (see [22] ). This supposed a sudden increase

of around 15,0 0 0 cases in one day (see [42] ). 

In addition, up to 16 February 2020, the WHO decided to continue reporting only cases confirmed with laboratory tests

in its situation reports (see [43] ). On 17 February 2020, the WHO changed its protocol to count cases and decided (see [23] )

to include in its reports the data provided by the Hubei province. This supposed a sudden increase of around 20,0 0 0 cases

in one day (see [22] ). 

On 21 February 2020 China (and WHO) informed that they have “revised their guidance on case classification for COVID-

19, removing the classification of ’clinically diagnosed’ previously used for Hubei province, and retaining only ‘suspected’

and ‘confirmed’ for all areas, the latter requiring laboratory confirmation. Some previously reported ‘clinically diagnosed’

cases are thus expected to be discarded over the coming days as laboratory testing is conducted and some are found to be

COVID-19-negative” (see [24] ). 

Thus, different criteria have been used in the official reports, with even different data in Chinese and WHO reports from

13 February 2020 up to 16 February 2020. This hinders the calibration of our mathematical model and makes very difficult

an accurate forecast. Therefore we have filtered the data to get more reliable values. 

In order to smoothly distribute the sudden increase of 17,410 cases in the number of cases reported before the 17 Febru-

ary 2020, we distributed those 17,410 cases to previous dates according to the following formula: 

c ar (t) = c r (t) + 17410 

∑ t 
τ= t c(τ ) ∑ t a 
τ= t c r (τ ) 

, 

where c ar ( i, t ) denotes the adjusted number of reported cases in country i at time t , t = 12 January 2020 is the date of

the first available data and t a = 16 February 2020. This filtered function is the one used for the identification of parameters

mentioned in Section 3.7 . 

This filtering procedure highlights the fact that reported data could be inconsistent. In this case, since our model repro-

duces the biology of the pandemic, if reported data are incorrect (with the exception of small noise) and are not consistent

with the biology of the pandemic, the model would not be able to fit the data in a reasonable way. Thus, the use of this

model could asses the fact that some data are reported incorrectly. 

We show in Fig. 3 , the evolution of c r and c ar in China from 12 January 2020 up to 28 March 2020. 

According to [15] , 86% of all infections were undocumented prior to 23 January 2020, when travel restrictions where

applied in Wuhan. Furthermore, after Wuhan’s closure measures (later extended to much of China), the dynamics of the

epidemic changes. Between 24 January 2020 and 8 February 2020, it is estimated that the percentage of invisible infected

people drops to 35% (see [15] ). Therefore, we consider here that the numbers of deaths that we have in our database,

reported by authorities, are very close to the real ones, but the real total cases are underestimated. Actually, according to

the percentages given above, we take 

θ (t) = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

1 − 0 . 86 = 0 . 14 , if 1 December 2019 ≤ t ≤ 24 January 2020 , 

linear continuous, if 24 January 2020 ≤ t ≤ 8 February 2020 , 

1 − 0 . 35 = 0 . 65 , if 8 February 2020 ≤ t. 

(8)



12 B. Ivorra, M.R. Ferrández and M. Vela-Pérez et al. / Commun Nonlinear Sci Numer Simulat 88 (2020) 105303 

Fig. 3. Evolution of the number of cases in China: Reported ( c r ) and adjusted reported data ( c ar ). 

Table 2 

Summary of the parameters to be identified with the multiobjective technique presented in 

Section 3.7 , for the COVID-19 in China. A brief description ( Description ) and the range of the 

boundary values ( Range ) considered during the optimization process are reported. 

Notation Range Description 

β I [0,0.75] disease contact rate (day −1 ) of a person in compartment I . 

C E [0,0.4] used to estimate βE = C E βI 

C u [0.4,0.9] used to estimate β
I 
= C u βI 

δR [7,21] used to estimate d H D = d H R + δR 

δω [0,0.2] used to estimate ω = ω + δω 

ω [0.005,0.022] minimum case fatality rate during the epidemic 

κ1 [0,0.2] efficiency of the control measures 

 

 

 

 

 

 

 

 

 

 

 

Thus, even if the reported deaths d r ( t ) can be considered a good estimation of the real numbers, neither the reported

cases c r ( t ) nor the adjusted reported cases c ar ( t ) described above would be a good estimation of the real number of infected

cases c real ( t ), which can be computed as 

c real (t) = 

c ar (t) 

1 − θ (t) 
. 

In order to effectively prevent further exportation of infected individuals to the rest of the country, the Chinese govern-

ment decided to impose a cordon sanitaire (i.e. all public transportation and all outbound trains and flights were halted)

around Wuhan and neighboring municipalities on 23 January 2020 ( [21] ). Therefore, we considered the implementation of

control measures after this date, in order to represent the real situation of the measures imposed: 

m E (t) = m I u (t) = m I (t) = m H R (t) = m H D (t) = 

{ 

1 , if t ∈ [ 1 December 2019 , λ1 ) , 

exp 

(
− κ1 (t − λ1 ) 

)
, if t ∈ [ λ1 , 29 March 2020 ] , 

where λ1 = 23 January 2020 and the rest of parameters need to be identified. 

Using the multiobjective optimization process mentioned in Section 3.7 , we determine the following parameters: β I , C E ,

C u , δR , δω , ω and κ1 . All those parameters are bounded according to values found in the literature (see [15] ). In Table 2 ,

we recall the meaning of those parameters and their range of values considered during the optimization process for the

particular case of COVID-19 in China. 

From a numerical point of view, as explained above, we use the classic 4th order Runge–Kutta method with four stages

(RK4) and with four hours as time step in order to approximate the solution of system (3) . The numerical model and the

algorithm WASF-GA are implemented in Java. Experiments are performed in a computer with an I7-4790 3.6 Ghz CPU and
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Table 3 

Results obtained from the parameter identification step for experi- 

ments EXP 29M , EXP 25F , EXP 08F and EXP 29J . 

Notation EXP 29M EXP 25F EXP 8F EXP 29J 

β I 0.2834 0.3653 0.3718 0.4012 

C E 0.3806 0.0800 0.0828 1.4306 ×10 −5 

C u 0.4001 0.4053 0.4271 0.8559 

δR 7.0000 9.7528 7.2773 12.6250 

δω 0.0195 0.0155 1.3265 ×10 −5 4.6360 ×10 −6 

ω 0.0161 0.0220 0.0220 0.0220 

κ1 0.1090 0.1007 0.1415 0.2000 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

32Gb of Ram. One execution of the model takes around 0.01 s and the full parameter identification process takes around

660 s. 

4.2. Results 

We present and discuss the results returned by our model, considering the parameters that were fixed for the case of

China and the parameters to be identified (presented in Section 4.1 ). 

In particular, to show the robustness of the proposed approach, we have run the experiment by considering data c ar ( t )

and d r ( t ), from the index case up to different values of the final date t f . We set t f to the following particular values: 

• t f = 29 March 2020: this date corresponds to that of the last data available before running the numerical experiments. We

denote this experiment by EXP 29M 

. 
• t f = 25 February 2020: this date is a representative date for which the epidemic in China was decreasing (i.e. the daily

number of reported cases was decreasing during several days). We denote this experiment by EXP 25F . 
• t f = 8 February 2020: this date is considered as the inflection point for which the daily number of reported cases starts

to decrease, we denote this experiment by EXP 08F . 
• t f = 29 January 2020: this date is a representative date for which the epidemic in China was growing (i.e. the daily number

of reported cases was increasing during several days), we denote this experiment by EXP 29J . 

The objective is to show how the model and the parameter estimation methodology deal with incomplete data. This

study also illustrates the robustness of our approach to the over-fitting of the model parameters with respect to the reported

data. 

In Table 3 , we show the values of the optimized parameters obtained at the end of each experiment. From those results,

on the one hand we observe that the values of β I , C E , C u , ω , δω and κ1 show a progressive evolution to the value obtained

with EXP 29M 

, when increasing the amount of available data for fitting the model to observed data. There is a noticeable

difference between the values returned at the end of EXP 29M 

and EXP 29J . This indicates that a reasonable amount of data

should be available to estimate well some of the model parameters. Estimating those parameters at an early stage of the

epidemic could produce poorly consistent results. 

Additionally, for parameters C u , ω , δω and κ1 , we observe that the results returned by EXP 29M 

and EXP 25F are quite

similar. 

Additionally, focusing on δR , we observe that the value generated with EXP 29M 

and EXP 08F clearly differs from the one

obtained with EXP 25F and EXP 29J . We note that this particular parameter was already reported in the literature (see, e.g.

[15] ) as being difficult to be estimated (considering a range of one month). Again, this shows that the estimation of some

key parameter could change dramatically during an epidemic and re-calibration should be performed periodically to capture

the recent behavior of the epidemic. 

In Fig. 4 , we show the evolution of the number of cases and deaths in China from 1 December 2019 to 29 March 2020

for the reported data (i.e. c ar ( t ) and d ( t )) and for the results obtained at the end of experiments EXP 29M 

, EXP 25F , EXP 25F

and EXP 29J . 

Focusing on the number of cases, we observe that results obtained with EXP 29M 

, EXP 25F reproduce quite accurately the

evolution of the number of cases. In particular, we found a final number of cases around 80,980 and 83,800, considering

EXP 29M 

and EXP 25F , respectively (corresponding to an error of less than 1.8 % with respect to the reported values). The final

number of cases obtained with EXP 08F is around 65,950, which correspond to an underestimation of -20% with respect to

real reported data. Finally, we observe that EXP 29J forecasts poorly and clearly underestimates the evolution of the epidemic

up to the 29 March 2020, with only 52,740 cases ( −36 % with respect to the reported value). However, all forecasts capture

reasonably the deceleration of the daily number of cases observed at the end of February. This indicates that forecasting at

an early stage of the epidemic (before the inflection point in the curve of the reported cases) is quite a difficult task. 

Focusing on the number of deaths, it seems that all results do not capture efficiently the drastic decrease occurring at

the end of February. However, the result returned by EXP 29M 

shows a slope similar to that of the reported deaths. In all

cases, the obtained estimations are in a reasonable range compared to the reported final value (with an error of ± 24%). 
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Fig. 4. Evolution of the number of (TOP) cases and (BOTTOM) deaths in China from 1 December 2019 to 29 March 2020: Adjusted reported cases (a.r.c) 

and deaths, and estimation obtained with EXP 29M , EXP 25F , EXP 08F and EXP 29J . 

 

 

 

 

 

 

 

 

 

 

 

 

We now focus on the results returned at the end of Experiment EXP 29M 

to analyze the main key factor that may explain

the dynamics of the COVID-19 epidemic in China up to 29 March 2020. 

In Fig. 5 , we show the evolution of the adjusted reported cases and the detected, undetected and total (i.e. detected plus

undetected) cases estimated by our model. We observe that the final number of undetected cases (around 87,100 cases)

estimated by our model represents around 52 % of the total number of cases (around 168,100 cases). Furthermore, it seems

that control measures have not contained their growing as fast as for the detected cases. These results are interesting as they

indicate that, despite the relative control of the epidemic in China, there may still exist an undetected source of infected

people that could cause an increase of the epidemic in a near future, if the control measures are significantly relaxed. 

In Fig. 6 , we show the evolution of Hospitalized and Recovered people estimated by our model and reported data. The

model estimates that the peak of the number of people hospitalized at the same time has been reached around 17 February

2020, with 64,704 hospitalized patients. According to data reported in 

https://www.worldometers.info/coronavirus/country/china/ 

the peak was reached on 17 February 2020 with around 58,0 0 0 hospitalized people at the same time. The model es-

timates quite reasonably the number of hospitalized people. However, the obtained results slightly overestimate the real

observations by around 11.6 % . Focusing on Recovered people, our model returns a final number of 75,100 people, which

is very close to the real observation (around 75,130 recovered people on 29 March 2020). This shows that the proposed

methodology is a reasonable decision tool to estimate the number of beds in hospitals during an epidemic or pandemic. 

https://www.worldometers.info/coronavirus/country/china/
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Fig. 5. Evolution of the number of cases in China from 1 December 2019 to 29 March 2020: Adjusted reported cases (a.r.c.), as well as detected, undetected 

and total cases obtained with EXP 29M . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Additionally, in Fig. 7 , we show the evolution of Hospitalized people in China considering the adjusted reported cases

(i.e. c ar ( t ) minus the number of reported deaths and recovered people at time t ) and the results returned at the end of

experiments EXP 29M 

, EXP 25F , EXP 08F and EXP 29J . We observe that in all cases, the estimated date for the peak of people

in Hospital is close to the real observed date (17 February 2020). This seems to indicate that our approach is able to detect

early a reasonable approximated date for this peak. Focusing on the magnitude of this peak, EXP 29M 

, EXP 25F and EXP 08F

give acceptable estimations (with error of ± 13.8%). However, as expected, the magnitude of the peak returned with EXP 29J

underestimates the reported data (with an error of -24 % ). 

In Fig. 8 , we present the evolution of the daily number of new people in the exposed compartment, new cases and

new deaths in China from 1 December 2019 to 29 March 2020 considering the results returned at the end of experiments

EXP 29M 

. We also show the adjusted daily number of new reported cases (a.r.c.) and the daily number of new reported

deaths. These outputs are of interest to estimate the behavior of the epidemic curve (see [44] ), and they can be used to

study the efficiency of control measures to flatten this curve. 

Here, we observe that considering the daily number of new cases and new deaths, the predicted values fit reasonably

well the reported ones (taking into account that there were several errors and approximations in the reported number of

deaths, see, e.g. [45] ). Focusing on the number of new daily people in the exposed compartment E , we observe that the peak

was reached on 27 January 2020, suggesting that the isolation measures taken in China on 23 January 2020 were efficient

to quickly reduce the magnitude of the epidemic. The peak for the new daily cases and deaths (which is the visible part for

the society) is delayed due to the transition rates between each compartment of the disease. Therefore, despite the effects

of the control measures are immediate, this effect is visible for the society after a non negligible delay (in this case around

two weeks). 

In Fig. 9 , we show the evolution of the effective reproduction number R e ( t ). We observe that this value decreases since

the application of the control measures and it remains below 1 after 1 February 2020. These results are consistent with the

fact that a decrease in the daily number of reported cases was observed at the beginning of February 2020. 

In Table 4 , we present some important parameters and threshold values related to this epidemic. In particular, we observe

that in our case the basic reproduction ratio R 0 is 4.2732, which is bigger than other values reported in the literature

(between 2.5 and 3.0, see [15] ). This could be explained by the fact that we have taken into account the undetected people.

Additionally, we observe that people in compartment E represent around 26 % of the infections. People in compartment

I u caused around 37% of infections. Those results suggest that people with no or few symptoms were the major source of

infection. However, it seems that our model underestimates the infection due to hospitalized people with only 1 % of the

infections (it should be around 3%). A more precise approach should be proposed to estimate better the value of C H . 

Finally, we analyze the impact of the detection parameter θ ( t ) on the global magnitude of the epidemic. With that aim,

considering the model parameters obtained at the end of EXP 29M 

, we replace θ ( t ) by a constant function with values 0.14,

0.25, 0.5, 0.75 and 1 and run the model up to 29 March 2020. In Fig. 10 we show the evolution of the total number of

cases (detected plus undetected) returned by each scenario. We observe that increasing the detection of affected people has

a major impact on the global magnitude of the epidemic. The model estimates a reduction on the total amount of cases

from 206,500, when detecting only 14% of cases, to less than 2,0 0 0 total cases, when detecting 100% of cases (which is an
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Fig. 6. Evolution of the number of Hospitalized (Top) and Recovered (Bottom) people in China from 1 December 2019 to 29 March 2020 considering 

reported data and estimation obtained with EXP 29M . 

Table 4 

Results obtained with experiment EXP 29M . 

Notation Value 

R 0 4.2732 

βE 0.1079 

β I 0.2834 

βI u [0.1739, 0.2650] 

βH R [0.0052, 0.0924] 

βH D [0.0052, 0.0924] 

ω( t ) [0.0161, 0.0356] 

�E ( t f ) 43,560 

�I ( t f ) 61,309 

�I u (t f ) 61,575 

�H ( t f ) 1,640 
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Fig. 7. Evolution of the number of Hospitalized people in China from 1 December 2019 to 29 March 2020, considering the adjusted reported cases (a.r.c.) 

and the results returned at the end of experiments EXP 29M , EXP 25F , EXP 08F and EXP 29J . 

Fig. 8. Evolution of the daily number of new people in the exposed compartment (Top-Left) , new cases (Top-Right) and new deaths (Bottom) in China 

from 1 December 2019 to 29 March 2020 considering the results returned at the end of experiment EXP 29M . We also report the adjusted daily number of 

new reported cases and the daily number of new reported deaths. 
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Fig. 9. Evolution of the effective reproduction number R e ( t ) in China from 1 December 2019 to 29 March 2020 obtained with EXP 29M . 

Fig. 10. Evolution of the total number of cases (detected plus undetected) in China from 1 December 2019 to 29 March 2020, considering parameters from 

EXP 29M and the function θ given in (8) , and also scenarios in which θ ( t ) is given the constant values of 0.14, 0.25, 0.5, 0.75 and 1. 

 
ideal case). Those results suggest that a detection campaign should be applied to reduce the impact of current COVID-19

epidemics. 



B. Ivorra, M.R. Ferrández and M. Vela-Pérez et al. / Commun Nonlinear Sci Numer Simulat 88 (2020) 105303 19 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5. Conclusions and discussion 

In this work, we developed a new θ-SEIHRD model adapted to the characteristics of COVID-19. This model considers

some important characteristics of the COVID-19, such as the undetected infectious people and the effect of the control

measures. In particular, it includes a novel approach that considers the fraction θ of detected cases over the real total

infected cases, which allows to study the importance of this ratio on the impact of COVID-19. We also introduced a method

to estimate some of the unknown parameters of this model. Additionally, we proposed the use of a filtered version of the

data reported by the WHO, in order to smoothly distribute along the previous dates the sudden increase of 17,414 cases

reported on 17 February 2020. 

From a general point of view, the outputs returned by the simulation fit quite well the data reported by the WHO. In

particular, they estimated reasonably the date and magnitude of the peaks corresponding to the number of new cases, new

deaths and amount of hospitalized people. This indicates that the proposed methodology can be used as an useful decision

tool for policy makers. However, considering an estimation performed at an early stage of the epidemic could produce poor

results. 

Focusing on the study of the peaks of some relevant curves of the epidemic (e.g. new exposed people, new cases, new

deaths and hospitalized people), results show that the control measures in China were efficient to quickly reduce the mag-

nitude of the epidemic. However, due to the transition rates between the disease compartments, the visible impact for the

society has a delay of two weeks after the beginning of those control measures. 

From the model and simulations considered in this work, we estimate that the value of the basic reproduction number

R 0 , for COVID-19 in China, is 4.2732. We note that this value is higher than the one usually reported in the literature

(between 2.5 and 3 see, e.g. [15] ). This could be due to the fact that our model also estimates the amount of undetected

cases, which increases the initial growth of the epidemic. Additionally, the effective reproduction number R e decreased,

mainly due to the application of control measures, and reached values lower than 1 after 1 February 2020. 

Considering the total cases, the model estimates that, including undetected cases, around 168 , 100 people could have

been infected in China. Those undetected cases could represent around 52% of the total number of cases. Furthermore,

they may have caused around 37% of the total infections. These results are consistent with other conclusions found in the

literature (see [46] ). Other studies found that asymptomatic or mild cases represent about 40% − 50% of all infections (see

[47] ) whereas in [48] it is estimated that the percentage of symptomatic COVID-19 cases reported is 33%. 

Finally, we also proposed a study of the impact of the percentage of detection of cases and obtained that the magnitude

of the epidemic can be drastically reduced when increasing this percentage. This results could be used as a recommendation

to countries currently actively affected by COVID-19. 

However, we also note some limitations in the proposed methodology. 

We assume that the population inside the considered countries or territories is homogeneously distributed (this could be

improved by dividing some of them into a set of smaller territories with similar characteristics). Thus, the spatial distribution

of the epidemic inside a territory is not taken into account. Additionally, the current model is only suitable for countries

or territories with a relevant number of people infected by COVID-19, where local transmission is the major cause of the

disease spread. The between-country spread has not been modeled in this work. Moreover, since there is no clear scientific

evidence of the effect of the humidity and the temperature on SARS-CoV-2, we have not included these two factors in our

model (this would need to be revised in case of new findings regarding this topic). 

In this work we also point out the fact that we worked with official reported data, whose quality has been affected by:

i) changes in guidelines to count cases in China (as mentioned above); ii) uncertainty about the number of undocumented

infections; and iii) uncertainty about some of the characteristics of SARS-CoV-2. 
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